J'ai un système a deux inconnu pouvait vous me dire ce que vous trouver pour les comparer a mes résultat f(0)=1,4 f(2)=0,2 f'(0)=0 f'(2)=0 f(x)=ax³+bx²+cx+d f'(
Mathématiques
bestyanou971
Question
J'ai un système a deux inconnu pouvait vous me dire ce que vous trouver pour les comparer a mes résultat
f(0)=1,4 f(2)=0,2 f'(0)=0 f'(2)=0
f(x)=ax³+bx²+cx+d
f'(x)=3ax²+2bx+c
f(0)=1,4 f(2)=0,2 f'(0)=0 f'(2)=0
f(x)=ax³+bx²+cx+d
f'(x)=3ax²+2bx+c
2 Réponse
-
1. Réponse melkior60
Bonjour
f(0)=a*0+b*0+c*0+d=1.4 donc d=1.4
f'(0)=3a*0+2b*0+c=0 donc c=0
f(2)=a*(2*2*2)+b*2*2+0+1.4=0.2
=8a+4b+1.4=0.2
=8a+4b=0.2-1.4=-1.2 équation 1
f'(2)=3a*2²+2b*2=0
=12a+4b=0
4b=-12a
b=-12/4*a=-3a
en remplaçant b dans l'équation 1
8a+4b=-1.2
8a+4*(-3a)=-1.2
8a-12a=-1.2
-4a=-1.2
a=0.3
b=-3*a=-3*0.3=-0.9
c=0
d=1.4
f(x)=0.3* (x puissance 3) -0.9x² +1.4
cqfd -
2. Réponse Anonyme
f(0)=1,4 f(2)=0,2 f'(0)=0 f'(2)=0
f(x)=ax³+bx²+cx+d
f'(x)=3ax²+2bx+c
f(0)=1,4 donc d=1,4
f(2)=0,2 donc 8a+4b+2c+1,4=0,2 donc 8a+4b+2c=-1,2
donc 4a+2b+c=-0,6
f'(0)=0 donc c=0
donc 4a+2b=-0,6 donc 2a+b=-0,3
f'(2)=0 donc 12a+4b=0 donc b=-3a
donc -a=-0,3 donc a=0,3 et b=-0,9
finalement f(x)=0,3x³-0,9x²+1,4