Mathématiques

Question

aidez moi !!! c urgent !!! pour lundi !!!
il faut que je fasse les deux exercices , svp merci
aidez moi !!! c urgent !!! pour lundi !!! il faut que je fasse les deux exercices , svp merci
aidez moi !!! c urgent !!! pour lundi !!! il faut que je fasse les deux exercices , svp merci
aidez moi !!! c urgent !!! pour lundi !!! il faut que je fasse les deux exercices , svp merci

1 Réponse

  • Proposition de résolution pour le premier exercice :

    K = [tex](5x - 2)^{2} - (x - 7)(5x - 2) [/tex]

    1] Je développe
    K = [tex](25 x^{2} - 20x + 4) - (5 x^{2} -2x -35x +14) [/tex]
    K = tex]25 x^{2} -20x +4 -5 x^{2} +2x +35x -14[/tex]

    Je réduis
    K = [tex]20 x^{2} +17x -10[/tex]

    2] = [tex]20 x^{2} +17x -10[/tex] est une équation du second degré. 

    Je calcule le déterminant :

    Δ [tex] = b^{2} - 4ac = 17^{2} -4 *20*-10 \\ = 289 +800 \\ = 1089[/tex]

    On remarque que [tex]\sqrt{1089} =33[/tex]

    Δ > 0 alors l'équation admet deux solutions réelle [tex] x_{1} [/tex] et [tex] x_{2} [/tex]

    Solutions
    [tex]x_{1}= (\frac{-b - \sqrt{delta} }{2a} = (\frac{-17-33}{40} ) = - \frac{5}{4}[/tex]

    [tex]x_{2}= (\frac{-b +\sqrt{delta} }{2a} = (\frac{-17+33}{40} ) = \frac{2}{5} [/tex]

    Factorisation :
    de 20x² + 17x − 10 que l'on peut écrire sous une forme factorisée :
      20 (x + 5/4)(x − 2/5)

    3] 2/5 étant une des solutions de l'équation donc 2/5 est une valeur qui annule l'expression K